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The problem of the structure of a magnetohydrodynamic shock wave is the 
problem of finding for a non-ideal gas the solution of the equations of 
magnetohydrodynamics that assumes at x = f m the values which satisfy 
the known conservation laws for transition through a sharp discontinuity 
surface in an ideal gas. In the study of the structure of a shock wave 
it is assumed that in a coordinate system in which the wave is at rest 
the motion within the zone representing the shock wave is the steady one- 
dimensional motion of a non-ideal gas. In this formulation the problem 
of the structure of a parallel shock wave was considered in [l 1. Some 
general questions on the structure of an inclined shock wave with all 
dissipative coefficients included were considered in [2 1. The present 
paper is an investigation of the flow within the shock-wave zone in the 
case when dissipation of energy in the wave arises from consideration of 
magnetic viscosity and the second kinematic viscosity. With an analogous 
formulation the structure of a certain special kind of shock wave was 
considered in 13 I. 

‘Ihe equations of steady one-dimensional flow of a perfect gas, de- 
scribing the problem of shock-wave structure when only the magnetic vis- 
cosity and second viscosity are different from zero, have the form 

vm&f= uH - vH,, + cE, p~~=p+pu~ + &HZ- J, 

pm-&H,H= J,, pu = M, H, = const (1) 

Here H,, H, u, v are respectively the components of the magnetic 
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field and velocity along the x- and y-axes, E the z-component of the 

electric field, c the speed of sound, J, and J, the x- and y-components 

of momentum flux, U the energy flux, and M the mass flux. Equations (1) 

are written in a system of coordinates in which the flow may be con- 

sidered plane. At x = f mthe flow representing the structure of the 

shock wave should approach a uniform flow with parameters satisfying the 

conservation laws. Thus in Equations (1) we have du/dx = dH/dx = 0, and 

the constants U, J,, J,, E, H,,, M can be determined from the values of 

the parameters ahead of the shock wave. Without loss of generality it is 

possible to take J, = 0. We introduce dimensionless variables according 

to the following equations (where we refer all quantities to the para- 

meters ahead of the shock wave): 

U = UgZ, v = uo9, P = fwo3@, H = ~4r~p,u,~h (2) 

In the new variables Equations (1) can be written in the following 

form: 

v, dh 

uO dx 
=h(r-hn2)-e, -e=f3++++h2-P 

pozco dx 

(3) 

q-h,,h=O, kBz+$~2+~h,2h2+eh=~ 

i 
k= &, hn= Hn CE pzdi E=- 

u 
1/4np,u,i’ 

e=--, 
1/471pozLo2 PoUo2 ’ PoUoS 

In the first and last of Equations (3) q has been eliminated by means 
of the third equation. From the condition that at x = - - the derivatives 

dh/dx and dr/dx vanish and r = 1 it follows that 

e = ho (1 - hn2), P = 1 + 0, + + ho2, E = Ml, + + + hoa I- 1 hn2 
( 2 ) 

Henceforth we will always assume that e > 0, that is, we will assume 

that the sign of h, is the same as the sign of (1 - hn2). From the last 

relation we obtain 

;hoz = k (P -- 1) - (E - liz) 

hn2+k--2 ’ 

e 
0 

= (E - ‘iz) - (2 - hn2) (p - 1) 

h,% + k-2 (4) 

For simplicity we will henceforth consider the case y < 2. Then 

h->2, ho2 _1- 12 - 2 > 0 

Since h, 2 > 0 and 6'a > 0, it is p ossible to obtain from (4) an in- 

equality bounding the range of possible values of the constant c 
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(5) 

After this preliminary remark we turn to an investigation of the iso- 

clines dr/dx = 0. Eliminating 8 from the second and fourth of Equations 

(3), we obtain their equation 

h2(JCr-~hn2)-2eh+(2k-l)22-22kPz+28=0 (6) 

It is easy to verify that the point r = 1, h = h,, satisfying condi- 

tions ahead of the wave, satisfies Equation (6). 

We solve Equation (6) for h: 

42 = kT:h$ + 

ez - (kf - hna) [(2k - 1) + - 2kPa + 2e] 

kt - hn2 (7) 

Thus real points of the isocline dr/& = 0 lie on both sides of the 
hyperbola h = e/(kr - hn2). Minima and maxima of the isocline lie on this 

hyperbola at points r where the discriminant of Equation (6) vanishes. 

It is evident imnediately from Equation (7) that the isocline dr/dx = 0 
has the asymptote I = hn2/k. 

Introducing the quantity a in place of 6 by means of the equation 

213-l =2k(P-l)-22a(h,2+k-2)(P-11) 

and using the expression for e, we put the discriminant of Equation (6) 

in the form 

D(T)= 2a(P - l)[(l- khn") + k(hn2 + k - 2)r]- 

- (kz - hn2) [(2k - 1) z2-2kPr+2k(P-I)+11 

The quantity a varies within the limits 

0 <a = *‘2h02 \(I 
l/2 h2-k 80 

For a = 0 the equation D(7) = 0 has three real roots 

hnZ 
T=T’ IT = 1, r=“-2k2t1 (P-l)+ &J 

As a increases,the root of D(r) = 0, that is,the point of intersection 

of the straight line 
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D(z) --L)(T) /_ = 2&A (I&2 i_ k - 2) (P - 1) (r - r*f 
hn3 - l,‘k 

‘*--2-t_k-2 

with the cubic parabola 

- D (4 laze = (2x: - 1) (lir - h,2) (z - Xl) (T - 1) 

increases monotonically. This permits a qualitative investigation of the 

question of the number and distribution of roots of the discriminant. 

The results of this investigation can be stated in the following form. 

In the plane of the variables P- 1 = l/2 ha2 + B,, and h,’ a curve can 

be drawn for 0, = 0 (u = 1) separating the _ 
region of existence of three roots of the 

discriminant from the region where only one 

root exists. It has the form shown in Fig.1 

(the curve ABCL)). 7he curve ECF, whose 

equation is fl = t*, is tangent to the curve 

A BCD at the point C. For points lying to 

the left of the curve ABCF the discrimin- 

ant has always (for arbitrary a> three 

roots. For points lying to the right of the 

curve ABCD the discriminant has three 

roots for small values of a and one root 

for large values of a. For the remaining 

points in the P- 1, h,'-plane the dis- 

criminant has three roots for small and 

large values of a, and one root for inter- 

mediate values. 
Fig. 1. 

We introduce also in the P - 1, hn2-plane the straight lines 

In the case when h, = 0, the values 1, r1 and h,2/k are roots of D(T 1. 
‘Ihe straight line r1 = h,/k passe s through point B and is tangent to the 
curve ECF at hn2 = 1. The straight line 71 = 1 is the asymptote of the 

curve ECF. 

It can be shown that: 

a) for points lying simultaneously below the straight lines 7, = h,2/k 
and h,‘/k = 1 in those cases when the number of roots is three and does 
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not change as a varies from zero-to the value under consideration, two 
roots of the discriminant are greater than hn2/k and one is smaller: 

Fig. 2. Fig. 3. 

b) in all other cases when there are three roots, one root is greater 
than h,*/k and the other two are smaller. 

These properties of the discriminant permit the isocline dr/dx = 0 in 
the h, r-plane to be constructed qualitatively according to Equation (7). 
If there are three roots, then in case (a) the isocline will have the 
form of curve (6) in Fig: 2. The dotted line indicates the hyperbola 
h = e/(kr - hn2). The point (1, 
tion, always lies on the closed 

h, ), corresponding to the initial condi- 
branch. In case (b) the isocline will 

have the form of curve (6) in Fig. 3. 

Fig. 4. 

We note that in this case the initial 
point may lie either above or below the 
asymptote r = hn2/k, and the point of 
intersection of the isocline with the 
asymptote may be to the right or left of 
the r-axis. However, if the discriminant 
has only one root the isocline has the 
form of curve (6) in Fig. 4. The isocline 
dh/dx = 0 in the h,r-plane is the hyper- 
bola 

h(r-kz) -e (8) 

with asymptotes h = 0 and T = hn2; it is indicated by the numeral (8) in 
Figs. 2, 3 and 4. 

From the determination of hn it follows that for points above the 
line r = hn2 

d(4~-P,), 

the gas speed is greater than the Alfven speed aA = H,,/ 

and for points below the line r = hn2 the speed is less than 

that. 
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Since for x = & m the flow corresponding to the problem of the shock- 

wave structure should tend to a uniform stream (~~/~ = &/C&Z = 01, points 

corresponding to conditions behind and ahead of the shock are the points 

of intersection of the isoclines (6) and (8). These points of intersec- 

tion are the singular points of the equation 

dz h2 (k-c - h,z) - 2eh + (2k - 1) 9 - 2kPz + 2~ 

dx = Zkr [h (t - hnz) - e] (9) 

equivalent to the two differential equations (3). Solutions of the prob- 

lem of shock-wave structure correspond to the integral curves of Equa- 

tion (9) joinin g the singular points lying in the region r > 0. In order 

to investigate the field of integral curves it is first of all necessary 

to study the character of these singular points. 

It is shown in [2 ] that the character of a singular point of Equation 

(9) in the h, r-plane depends on the value of the velocity corresponding 

to the given singular point. Thus the following singular points are 

possible (enumerated in order of decreasing velocity): 

Point 1 -- a node, from which integral curves issue as x increases. 

At this point the inequality a+ < u is satisfied, or 

Point 2 -- a saddle point. At this point the following inequality is 

satisfied: 

Point 3 -- a saddle point. At this point the following inequality is 

satisfied: 

or 

Point 4 -- a node, into which integral curves enter. At this point 

the following inequality is satisfied: 

Here a, and a_ are the fast and slow magneto-acoustic speeds. 
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If all four singular points occur,two of them lie above the line 
r = h,* and the other two below it. If there are only two singular points 

they lie on one side of this line. The transition l+ 2 is called the 

fast magnetohydrodynamic shock wave, the transition 3 -+ 4 is called the 

slow magnetohydrodynamic shock' wave, and all other transitions are inter- 

mediate shock waves. If two singular points coalesce into one (the iso- 

clines (6) and (8) become tangent) the stream velocity at this point is 

equal to one of the magneto-acoustic speeds and the shock wave becomes a 

weak perturbation. 

It can be shown that if the curve (6) has the form indicated in Figs. 

2 and 4 all singular points lie on one branch of curve (6). 

The investigation of the isoclines (6) and (8) that has been carried 

out permits qualitative construction of the field of integral curves of 

the system of differential equations (3). If the isoclines (6) and (8) 

have the form shown in Fig. 3 the corresponding field of integral curves 

has, depending on the value of the ratio of dissipation coefficients 

PIP&p the form shown in Figs. 5, 6 and 7. In all other cases, if there 

are four singular points,the character of the integral curves does not 

change*. If there are two singular points (either pair) the behavior of 

Fig. 5. 
Fig. 6. 

the integral curves in the vicinity of these points remains the same as 

in the presence of four singular points. 

The picture of the integral curves shown in Fig. 5 corresponds to the 

case when the ratio p/pdvnn is small. In this case points 1 and 2, 3 and 

* In the case of the disposition of isoclines shown in Fig. 2. the be- 

havior of the integral curves of Equation (9) was studied in the 
thesis of A.N. Voinov (Moscow State University, Faculty of Mechanics 
and Mathematics, 1960). 
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4 are connected together in pairs by unique integral curves representing, 

respectively, the structure of the fast and slow shock waves. 'Ihe points 

of the first pair and points of the 

second pair are not connected by inte- 

gral cu&es, which corresponds to the 

absence of the structure of intermediate 

shock waves. If PLIP(& + 0 the integral 
curves representing the structure of 

the fast and slow shock wave tend to co- 

incidence with the corresponding seg- 

ments of the isocline dh/dx = 0. 

Fig. 7. 
Figure 6 corresponds to a unique 

value of the ratio p/p,,v, = (p/pdvnlt 
for which the integral curve leaving 

point 2 enters point 3. lhis value of p/p,,vln separates the cases shown 

in Figs. 5 and 7. H ere the integral curves connect points 1 + 2 (fast 

wave), 3 -+ 4 (slow wave) and 2 + 3 (intermediate wave), the integral 

curves connecting these singular points being unique. The more complicated 

transitions l+ 2 + 3, 2 + 3 -f 4, 1 + 2 + 3 + 4 are also possible. 

For large values of p/p,,vnl there exists the case shown in Fig. 7, 

where the integral curves connect the following pairs of singular points: 

1-B 2, 3 + 4, 1 + 3, 1 + 4, 2 + 4, all these pairs of points being con- 

nected by a single integral curve except for the pair l+ 4, which is 

connected by an infinite number of integral curves. There exist the 

following compound transitions: 1 + 2 + 4, 1 + 3 + 4. 

If P/Pfn + IX the integral curves tend to coincidence with the iso- 

cline dr/dx = 0. However, in this case, when the motion is supersonic at 

the initial point and subsonic at the final point, a gasdynamic shock 

wave arises within the structure of the shock wave, with H= const. We 

note that if such a shock wave exists the structure of the fast magneto- 

hydrodynamic shock wave is terminated by the gasdynamic shock, and the 

structure of the slow shock wave begins with the gasdynamic shock. The 

structure of the intermediate shock waves may also include a gasdynamic 

shock, which appears at the beginning of the l+ 3 shock, at the end of 

the 2 -f 4 shock and at an arbitrary point in the structure of the l+ 4 

shock. 

Thus in the formulation considered the fast and slow wave possess 

structure for arbitrary ratios of the dissipative coefficients. 

In cases when there are four singular points the intermediate shock 

waves may possess structure. 
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lhe transition 2 + 3 is possible only for 

P-CL -_ 
PoV* ( > POvm . 

‘Ihe transitions l+ 3 and 2 + 4 exist and are unique for 

&>(&). 

The transition l+ 4 is possible for 

and may proceed by an infinite number of integral curves. 

It is interesting to note that in the given formulation of the prob- 

lem of the structure of a shock wave the evolutionary shock wave in the 

sense of [4 1 differs from the non-evolutionary in that it alone possesses 
structure for arbitrary ratios between the dissipative coefficients. 

Note. The statement of Germain 12 I that in the formulation under con- 
sideration the slow shock wave does not always possess structure is false. 
It is based on the supposition that the point of intersection of the 
upper branch of the isocline dr/dx = 0 with the straight line h = h, 

passing through point 3 may lie below the h-axis. However, this point is 
connected with point 3 by transition through an ordinary gasdynamic shock. 
and must lie in the region r m> 0 if the pressure at point 3 is positive. 
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